Ringkasan Materi Dan Contoh Soal Persamaan Kuadrat Kelas X

Persamaan kuadrat adalah suatu persamaan polinomial berorde dua. Dalam bahasa yang lebih sederhana persamaan kuadrat adalah persamaan yang pangkat variabel tertinggi dua (kuadrat).

Persamaan kuadrat dalam x mempunyai bentuk umum:
ax2 + bx + c = 0 , dimana a ≠ 0,  a, b dan c adalah bilangan real.

a. Menyelesaikan persamaan kuadrat dengan memfaktorkan
ax2 + bx + c = 0 dapat dinyatakan menjadi
a (xx1) (xx2) = 0.
Nilai x1 dan x2 disebut akar-akar (penyelesaian) persamaan kuadrat.
Contoh 1 :
Selesaikan x2 – 4 x + 3 = 0
Jawab: x2 – 4 x + 3 = 0
(x – 3) (x – 1) = 0
x – 3 = 0 atau x – 1 = 0
x = 3 atau x = 1
Jadi, penyelesaian dari x2 – 4 x + 3 = 0 adalah 3 dan 1.

b. Menyelesaikan persamaan kuadrat dengan melengkapkan kuadrat sempurna
Persamaan kuadrat ax2 + bx + c = 0 dapat diselesaikan dengan mengubahnya menjadi (x + p)2 = q.
Contoh 1:
Tentukan himpunan penyelesaian dari x2 – 6 x + 5 = 0.
Jawab: x2 – 6 x + 5 = 0
x2 – 6 x + 9 – 4 = 0
x2 – 6 x + 9 = 4
(x – 3)2 = 4
x – 3 = 2 atau x – 3 = –2
x = 5 atau x = 1
Jadi, himpunan penyelesaiannya adalah{ 1 , 5}.

1. Menyelesaikan persamaan kuadrat dengan menggunakan rumus
Rumus penyelesaian persamaan kuadrat a x2 + b x + c = 0 adalah
Contoh :
Tentukan himpunan penyelesaian dari x2 + 7x – 30 = 0.
Jawab: x2 + 7x – 30 = 0
a = 1 , b = 7 , c = – 30
x = 3 atau x = –10
Jadi, himpunan penyelesaiannya adalah {–10 , 3}.

2. Jenis-jenis Akar Persamaan Kuadrat
Kita perhatikan kembali persamaan kuadrat ax2 + bx + c = 0 dengan akar-akarnya , b2 – 4ac disebut diskriminan (D).
Contoh :
Tanpa menyelesaikan persamaan lebih dahulu, tentukan jenis-jenis akar persamaan kuadrat berikut:

  1. x2 + 5 x + 2 = 0
Jawab :
  1. x2 + 5 x + 2 = 0
a = 1 , b = 5 , c = 2
D = b2 – 4ac = 52 – 4 . 1 . 2 = 25 – 8 = 17
Ternyata D > 0. Jadi, persamaan x2 + 5 x + 2 = 0 mempunyai dua akar real berlainan.

3. Jumlah dan hasil kali akar-akar persamaan kuadrat
  1. Persamaan kuadrat ax2 + bx + c = 0 mempunyai akar x1 dan x2.
ax2 + bx + c = 0
x1+x2= -b/a
 x1.x2=c/a
Karena x1 dan x2 merupakan akar-akar persamaan kuadrat, maka :
Jadi, , .
Contoh:
Akar-akar x2 – 3x + 4 = 0 adalah x1 dan x2. Dengan tanpa menyelesaikan persamaan tersebut, hitunglah nilai: 
a.x1 + x2 
b.x1.x2 
c.x12 + x22
d. x13 + x23 
Jawab: x2 – 3 x + 4 = 0 ® a = 1 , b = –3 , c = 4
a. x1 + x2 = 3
b. x1.x2 = 4
c. x12 + x22 = x12 + x22 + 2 x1.x2 – 2 x1.x2
= (x1 + x2)2 – 2 x1 x2 = 2 (-3)2 – 2 . 4 = 1
d. (x1 + x2)3 = x13 + 3 x12 x2 + 3 x1 x22 + x23
= x13 + 3 x1 x2 (x1 + x2) + x23
x13 + x23 = (x1 + x2)3 – 3 x1 x2 (x1 + x2)
= 33 – 3 . 4 (3)
= 27 – 36 = –9

4. Menyusun Persamaan Kuadrat
Persamaan kuadrat dapat disusun dengan:
v menggunakan perkalian faktor,
v menggunakan jumlah dan hasilkali akar-akar.

a. Menyusun persamaan kuadrat dengan menggunakan perkalian faktor
Pada bahasan terdahulu, persamaan kuadrat x2 + p x + q = 0 dapat dinyatakan sebagai
(xx1) (xx2) = 0 sehingga diperoleh akar-akar persamaan itu x1 dan x2. Dengan demikian jika akar-akar
persamaan kuadrat x1 dan x2 maka persamaannya adalah (xx1) (xx2) = 0.
Contoh 1:
Tentukan persamaan kuadrat yang akar-akarnya 3 dan -2.
Jawab: (xx1) (xx2) = 0
(x – 3) (x – (-2)) = 0
(x – 3) (x + 2) = 0
x2 – 3 x + 2 x – 6 = 0
x2x – 6 = 0.

b. Menyusun persamaan kuadrat menggunakan jumlah dan hasil kali akar-akar
Persamaan .
Dengan menggunakan x1 + x2 = –dan x1 x2 = , maka akan diperoleh persamaan:
x2 – (x1 + x2)x + x1x2 = 0.
Contoh:
Tentukan persamaan kuadrat yang akar-akarnya –2 dan –3.
Jawab: x1 + x2 = -2 – 3 = – 5
x1 x2 = 6
Jadi, persamaan kuadratnya x2 – (–5)x + 6 = 0 atau x2 + 5x + 6 = 0.

c. Menyusun persamaan kuadrat yang akar-akarnya berkaitan dengan akar-akar persamaan kuadrat lain
Seringkali kita mendapatkan suatu persamaan kuadrat yang akar-akarnya berhubungan dengan akar-akar persamaan yang lain.
Contoh 1:
Susunlah persamaan kuadrat baru yang akar-akarnya 3 lebih dari akar-akar persamaan x2 – 2x + 3 = 0.
Jawab:
Misal akar-akar persamaan x2 – 2x + 3 = 0 adalah x1 dan x2. ® x1 + x2 = 2 , x1 x2 = 3.
Jika akar-akar persamaan kuadrat baru adalah p dan q, maka p = x1 + 3 dan q = x2 +3
p + q = (x1 + 3) + (x2 + 3) p q = (x1 + 3) (x2 + 3)
= x1 + x2 + 6 = x1 x2 + 3(x1 + x2) + 9
= 2 + 6 = 8 = 3 + 2(2) = 9 = 18
Persamaan kuadrat yang akar-akarnya p dan q adalah x2 – (p + q) + pq = 0.
Persamaan kuadrat baru adalah x2 – 8x + 18 = 0.

Unknown

Contact hibou.bimbel@gmail.com. for more information

loading...

No comments:

Post a Comment